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Problem Setting

Nonconvex Optimization:
min
x∈X

F (x) := Eξ∼D [f (x, ξ)] ,

X ⊂ Rd – convex.

Convex Reformulation:
min
u∈U

H(u) := F (c−1(u)),

U = c(X ) ⊂ Rd – convex.

Unknown distribution D and transformation c(·).

Example: F (x1, x2) = max
{

1
4|x1 − 1|, 1

2|2x2
1 − x2 − 1|

}
.

Motivating Examples

Convex Reinforcement Learning [1]. MDP M(S, A, P , H, ρ, γ).
Parameter of a policy π ∈ Π, Π ⊂ R|S|×|A| is product of simplex sets.
State-action occupancy measure λπ for π ∈ X .

λπ(s, a) :=
+∞∑
h=0

γh Pρ,π(sh = s, ah = a) ,

H : U → R is a general (convex) utility. The goal
min
π∈X

F (π) := H(λπ).

• Standard RL, H(λπ) = r⊤λπ is linear in λπ.
• Pure exploration, H(λπ) – negative entropy of λπ.
• Imitation learning, H(λπ) is KL divergence.

Revenue Management and Inventory Control [2].
min

x∈[0,D]d
F (x) :=Eξ[f (x ∧ ξ)]

H(u) :=Eξ[f (c−1(u) ∧ ξ)].
Under transformation u = c(x) = Eξ[x ∧ ξ], H(u) is convex.
• Revenue management: f (x) = r⊤x − EηΓ(x, η).

Booking limit threshold v.s. Expected accepted reservations.
• Inventory with random capacity/supply: f (x) newsvendor objectives.

Ordering quantity v.s. Expected replenishment.

System Level Synthesis in Optimal Control [3].
Dynamics with finite horizon: x(t + 1) = At x(t) + Bt u(t) + w(t),

min
K

F (K) := E
[
x⊤Qx + u⊤Ru

]
, u(t) =

t∑
i=0

K(t, t − i)x(i).

Original control variable K v.s. New variable Φ := (Φu, Φx).
Variable change: K = c−1(Φ) := ΦuΦ−1

x ; Φx, Φu lower-block-triangular.

min
Φx,Φu

H(Φx, Φu), s.t. M
[

Φx
Φu

]
= I, H(·) is quadratic in Φx, Φu.

Transformation c(·) is Unknown

How does Projected (Sub)gradient Method behave?
• Simple to implement.
• Does not require transformation information.
• Run in an online fashion.

(Implicit) Hidden Convexity

C.1. H : U → R is convex and minu∈U H(u) admits a solution.

C.2. c : X → U is invertible. There exists µc > 0 such that

∥c(x) − c(y)∥ ≥ µc∥x − y∥ for all x, y ∈ X .

Proposition 1. Let C.1. and C.2. hold. For any α ∈ [0, 1],
x∗ ∈ X ∗ and x ∈ X , define xα := c−1 ((1 − α)c(x) + αc(x∗)). Then

F (xα) ≤ (1 − α)F (x) + αF (x∗), ∥xα − x∥ ≤ α

µc
∥c(x) − c(x∗)∥.

Subgradient Method

Non-smooth setting:
A.1. F (·) is ℓ-weakly convex, i.e., F (x) + ℓ

2 ∥x − y∥2 is convex in x.
A.2. Stochastic sub-gradients with E [g(x, ξ)] ∈ ∂F (x) and

E
[
∥g(x, ξ)∥2] ≤ G2

F .

Remark. If H(·) is Lipschitz and c(·) is smooth, then A.1. holds.

SM: xt+1 = ΠX (xt − η g(xt, ξt)).

Analysis based on Moreau envelope [4]:

ΛSM
t := E

[
F1/ρ(xt) − F (x∗)

]
,

F1/ρ(x) := min
y∈X

{
F (y) + ρ

2
∥y − x∥2

}
.

Convergence of SM

Theorem 1. Let C.1., C.2., A.1., A.2. hold, diam(U) ≤ DU . Fix
ε > 0, set η = 1

2ℓ min
{

1, µ2
cε

2

D2
UG2

F

}
. Then we have ΛSM

T ≤ ε after

T = Õ
ℓD2

U
µ2

c

1
ε

+ ℓD4
UG2

F

µ4
c

1
ε3

 .

• F (·) is non-smooth/non-convex, but SM converges in function value.
• Theorem 1 extends to smooth case under A.1.’ and A.2.’.

Projected SGD with Momentum

Smooth setting:
A.1.’ F (·) is L-smooth.
A.2.’ Stochastic gradients with E [∇f (x, ξ)] = ∇F (x):

E
[
∥∇f (x, ξ) − ∇F (x)∥2] ≤ σ2.

Proj-SGDM: xt+1 = ΠX (xt − η gt),
gt+1 = (1 − β) gt + β ∇f (xt+1, ξt+1).

Analysis based on Lyapunov function [5]:

ΛHB
t := E

[
F (xt) − F (x∗) + η

β

∥∥∥gt − ∇F (xt)
∥∥∥2
]
.

Convergence of Proj-SGDM

Theorem 2. Let C.1., C.2., A.1.’, A.2.’ hold and diam(U) = DU .
Fix ε > 0, set η = β

4L, β = min
{

1, µ2
cε

2

D2
Uσ2

}
. Then we have ΛHB

T ≤ ε after

T = Õ
LD2

U
µ2

c

1
ε

+ LD4
Uσ2

µ4
c

1
ε3

 .

• Last iterate convergence.
• We have F (xt) → F (x∗) and gt → ∇F (x∗) in expectation as t → ∞.
• When H(·) is µH-strongly convex: T = Õ

(
L

µ2
cµH

+ Lσ2

µ4
cµ

2
H

1
ε

)
.
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