Stochastic Optimization under Hidden Convexity

Problem Setting

min $\Phi_{\mathbf{x}}, \Phi_{\mathbf{u}}$ $H(\Phi_{\mathbf{x}}, \Phi_{\mathbf{u}})$, s.t. **M** $\int \Phi_{\bf x}$ $\Phi_{\mathbf{u}}$ $\overline{}$ $= I$, $H(\cdot)$ is quadratic in $\Phi_{\mathbf{x}}, \Phi_{\mathbf{u}}$.

$$
\lambda^\pi(s,a) := \sum_{h=0}^{+\infty} \gamma^h \, \mathbb{P}_{\rho,\pi}(s_h=s,a_h=a)\,,
$$

$$
\min_{\mathbf{K}} F(\mathbf{K}) := \mathbb{E} \left[\mathbf{x}^{\top} \mathcal{Q} \mathbf{x} + \mathbf{u}^{\top} \mathcal{R} \mathbf{u} \right], \quad u(t) = \sum_{i=0}^{t} K(t, t)
$$

Original control variable **K** v.s. New variable $\Phi := (\Phi_{\mathbf{u}}, \Phi_{\mathbf{x}})$. Variable change: $\mathbf{K} = c^{-1}(\Phi) := \Phi_{\mathbf{u}} \Phi_{\mathbf{x}}^{-1}$ \mathbf{x}^{-1} ; $\Phi_{\mathbf{x}}$, $\Phi_{\mathbf{u}}$ lower-block-triangular.

$$
\min_{\pi \in \mathcal{X}} F(\pi) := H(\lambda^{\pi}).
$$

-
-
-

$$
H(u) := \mathbb{E}_{\xi}[f(c^{-1}(u) \wedge \xi)].
$$

A.1., **A.2.** hold, diam $(\mathcal{U}) \leq D_{\mathcal{U}}$. Fix *.* Then we have $\Lambda_T^{\text{SM}} \leq \varepsilon$ after $\mathcal U$ 1 *ε* $+$ $\ell D_{\mathcal{U}}^4 G_F^2$ 1 μ_c^4 *ε* 3 \setminus *.*

• $F(\cdot)$ is non-smooth/non-convex, but **SM** converges in function value.

$$
\mathbb{E}\left[\nabla f(x,\xi)\right] = \nabla F(x)
$$

Transformation *c*(·) **is Unknown**

Ilyas Fatkhullin Niao He Yifan Hu

- Last iterate convergence.
-
- When $H(\cdot)$ is μ _{*H*}-strongly convex: $T = \mathcal{O}$

• We have $F(x^t) \to F(x^*)$ and $g^t \to \nabla F(x^*)$ in expectation as $t \to \infty$. $\left(\begin{array}{c}$ *L* $\overline{\mu_c^2 \mu_H}$ $+\frac{L\sigma^2}{\mu^4\mu^2}$ $\overline{\mu_c^4 \mu_F^2}$ *H* 1 *ε* \setminus *.*

$$
-x\|\leq \frac{\alpha}{\mu_c}||c(x)-c(x^*)||.
$$

 $||x - y||^2$ is convex in *x*.

$$
g(x^t,\xi^t)).
$$

y∈X

 \int

 $F(y) +$

ρ

2

$$
F(x^*)\Big],
$$

$$
\|y - x\|^2\Big\}
$$

 $F_{1/\rho}(x) := \min_{x \in \mathcal{X}}$

.

Convergence of SM

Theorem 1. Let **C.1.**, **C.2.**,
$$
A \varepsilon > 0
$$
, set $\eta = \frac{1}{2\ell} \min \left\{ 1, \frac{\mu_c^2 \varepsilon^2}{D_u^2 G_F^2} \right\}.$ \n
$$
T = \widetilde{\mathcal{O}} \left(\frac{\ell D_L^2}{\mu_c^2} \right).
$$

c

c

-
- Theorem 1 extends to smooth case under **A.1.'** and **A.2.'**.

Projected SGD with Momentum

Smooth setting:

A.1.' $F(\cdot)$ is <u>L-smooth</u>.

A.2.' Stochastic gradients with

$$
\mathbb{E}\left[\|\nabla f(x,\xi)-\nabla F(x)\|^2\right]\leq \sigma^2.
$$

Proj-SGDM:

$$
x^{t+1} = \Pi_{\mathcal{X}}(x^t - \eta g^t),
$$

$$
g^{t+1} = (1 - \beta) g^t + \beta \nabla f(x^{t+1}, \xi^{t+1}).
$$

Analysis based on Lyapunov function [5]:

$$
\Lambda_t^{HB} := \mathbb{E}\left[F(x^t) - F(x^*) + \frac{\eta}{\beta} \left\| g^t - \nabla F(x^t) \right\|^2\right].
$$

Convergence of Proj-SGDM

Theorem 2. Let **C.1.**, **C.2.**, Fix $\varepsilon > 0$, set $\eta = \frac{\beta}{4l}$ 4*L* $, \beta = \min$ $T = \mathcal{O}$ $\sqrt{ }$ $\overline{1}$ $LD^2_{\mathcal{U}}$

$$
\mathbf{A.1'}, \mathbf{A.2'} \text{ hold and } \text{diam}(\mathcal{U}) = D_{\mathcal{U}}.
$$
\n
$$
\left\{ 1, \frac{\mu_c^2 \varepsilon^2}{D_{\mathcal{U}}^2 \sigma^2} \right\}.
$$
\nThen we have $\Lambda_T^{\text{HB}} \leq \varepsilon$ after

\n
$$
\frac{\mu_c^2}{\mu_c^2} \frac{1}{\varepsilon} + \frac{LD_{\mathcal{U}}^4 \sigma^2}{\mu_c^4} \frac{1}{\varepsilon^3}.
$$

References

[1] J. Zhang, C. Ni, C. Szepesvari, M. Wang. *On the convergence and sample efficiency of variance-reduced policy gradient method*. NeurIPS 2021. [2] X. Chen, N. He, Y. Hu, Z. Ye. *Efficient Algorithms for Minimizing Compositions of Convex Functions and Random Functions and Its Applications in Network Revenue Management*. arXiv:2205.01774, 2022. [3] J. Anderson, J. C. Doyle, S. H. Low, N. Matni. *System level synthesis*. Annual Reviews in Control 2019. [4] D. Davis, D. Drusvyatskiy. *Stochastic subgradient method converges at the rate* $O(k^{-1/4})$ *on weakly convex functions*. arXiv:1802.02988, 2018. [5] I. Fatkhullin, A. Tyurin, P. Richtárik. *Momentum provably improves error feedback!* NeurIPS 2023.

